2016
DOI: 10.2139/ssrn.2748700
|View full text |Cite
|
Sign up to set email alerts
|

Random Projection Estimation of Discrete-Choice Models with Large Choice Sets

Abstract: We introduce sparse random projection, an important dimension-reduction tool from machine learning, for the estimation of discrete-choice models with high-dimensional choice sets. Initially, high-dimensional data are compressed into a lower-dimensional Euclidean space using random projections. Subsequently, estimation proceeds using cyclic monotonicity moment inequalities implied by the multinomial choice model; the estimation procedure is semi-parametric and does not require explicit distributional assumption… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 53 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?