Abstract:In this paper, we consider (random) sampling of signals concentrated on a bounded Corkscrew domain Ω of a metric measure space, and reconstructing concentrated signals approximately from their (un)corrupted sampling data taken on a sampling set contained in Ω. We establish a weighted stability of bi-Lipschitz type for a (random) sampling scheme on the set of concentrated signals in a reproducing kernel space. The weighted stability of bi-Lipschitz type provides a weak robustness to the sampling scheme, however… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.