Abstract:We investigate a population of binary mistake sequences that result from learning with parametric models of different order. We obtain estimates of their error, algorithmic complexity and divergence from a purely random Bernoulli sequence. We study the relationship of these variables to the learner's information density parameter which is defined as the ratio between the lengths of the compressed to uncompressed files that contain the learner's decision rule. The results indicate that good learners have a low … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.