Random Search Hyperparameter Optimization for BPNN to Forecasting Cattle Population
Bain Khusnul Khotimah,
Fitri Agustina,
Oktavia Rahayu Puspitarini
et al.
Abstract:Backpropagation Neural Network (BPNN) is a suitable method for predicting the future. It has weaknesses, namely poor convergence speed and instability, requiring parameter tuning to overcome speed problems, and having a high bias. This research uses the Random Search hyperparameter technique to optimize BPNN to automatically select the number of hidden layers, learning rate, and momentum. The added accuracy of momentum will speed up the training process, produce predictions with better accuracy, and determine … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.