2022
DOI: 10.48550/arxiv.2201.06643
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Random Splitting of Fluid Models: Ergodicity and Convergence

Abstract: We introduce a family of stochastic models motivated by the study of nonequilibrium steady states of fluid equations. These models decompose the deterministic dynamics of interest into fundamental building blocks, i.e., minimal vector fields preserving some fundamental aspects of the original dynamics. Randomness is injected by sequentially following each vector field for a random amount of time. We show under general assumptions that these random dynamics possess a unique invariant measure and converge almost… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?