Availability of powerful intravenous hypnotics and opioids with specific pharmacokinetic profiles, including rapid onset and short duration of action 1 has allowed the development and popularization of total intravenous anesthesia (TIVA). Due to its safety, rapid titrability, quick recovery with better operating room efficiency, and a low incidence of nausea and vomiting, 2,3 TIVA has become a valid alternative to inhaled general anesthesia. There are several modes of TIVA administration that range from the simple intermittent injection of small boluses of hypnotics with or without opioids to the infusion of anesthetics using complex computerized infusion pumps. Target-controlled infusion (TCI) TIVA consists of the administration of intravenous anesthetics according to their pharmacokinetic profiles in order to maintain desired concentration of the drugs in the central compartment (effectsite concentration). Computerized infusion devices equipped with software that continuously controls the infusion rates of the drugs are used for this purpose. The software includes pharmacokinetic models derived from studies involving volunteers with diverse demographic characteristics. The models are mathematical algorithms used to predict the plasma concentration of a drug after the administration of a bolus or after an infusion of varying duration. The TCI system uses the pharmacokinetic models to calculates the dose regimen for each drug, which usually consists of a bolus dose delivered to fill the central compartment (plasma), a constant infusion ଝ Please cite this article as: Rosero EB. La caracterización de la profundidad de la anestesia durante las infusiones controladas a objetivo:No es un trabajo fácil. Rev Colomb Anestesiol. 2016;44:187-189. rate equivalent to the elimination rate, and two exponentially decreasing secondary infusions to equilibrate the amount of drug transferred to the peripheral compartments of distribution. The pharmacokinetic models most frequently used for propofol TCI are the Marsh and the Schnider models. 4,5 Hemodynamic stability, recovery time, and discharge time may be improved by the use of TCI compared with manual administration of TIVA. 6,7 Furthermore, the depth of hypnosis and analgesia can be adjusted promptly and efficiently by changing the target concentration on the TCI devise without any need for mathematical calculations, comparable to changing the desired concentration of an inhaled anesthetic by just turning the dial of the vaporizer. However, TCI techniques also have several limitations, mainly related to inter-patient differences in pharmacokinetics, which may lead to poor performance of the models in prediction of target concentrations. 8 In this issue of the Colombian Journal of Anesthesiology, Mosquera-Dussán et al. 9 present the results of a cross-over randomized clinical trial on ASA I class patients undergoing elective orthopedic surgery of the upper or lower extremity. The authors compared variability of depth of anesthesia when either the Marsh or Schnider pharmacokinet...