In several scientific and industrial applications, it is desirable to build compact, interpretable learning models where the output depends on a small number of input features. Recent work has shown that such best-subset selection-type problems can be solved with modern mixed integer optimization solvers. Despite their promise, such solvers often come at a steep computational price when compared with open-source, efficient specialized solvers based on convex optimization and greedy heuristics. In “Fast Best-Subset Selection: Coordinate Descent and Local Combinatorial Optimization Algorithms,” Hussein Hazimeh and Rahul Mazumder push the frontiers of computation for best-subset-type problems. Their algorithms deliver near-optimal solutions for problems with up to a million features—in times comparable with the fast convex solvers. Their work suggests that principled optimization methods play a key role in devising tools central to interpretable machine learning, which can help in gaining a deeper understanding of their statistical properties.