Biological invasions dramatically affect the distribution, abundance and reproduction of many native species. Because of these ecological effects, exotic species can also influence the evolution of natives exposed to novel interactions with invaders. Evolutionary changes in natives in response to selection from exotics are usually overlooked, yet common responses include altered anti-predator defenses, changes in the spectrum of resources and habitats used, and other adaptations that allow native populations to persist in invaded areas. Whether a native population is capable of responding evolutionarily to selection from invaders will depend on the demographic impact of the invader, the genetic architecture and genetic variability of the native population and potentially the history of previous invasions. In some cases, natives will fail to evolve or otherwise adapt, and local or global extinction will result. In other cases, adaptive change in natives may diminish impacts of invaders and potentially promote coexistence between invaders and natives. Here, we review the evidence for evolutionary responses of native species to novel community members. We also discuss how the effects of introduced species may differ from those caused by natural range expansions of native species. Notably, introduced species may come from remote biotas with no previous evolutionary history with the native community. In addition, the rate of addition of introduced species into communities is much greater than all but the most extreme cases of historical biotic exchange. Understanding the evolutionary component of exotic/ native species interactions is critical to recognizing the long-term impacts of biological invasions, and to understanding the role of evolutionary processes in the assembly and dynamics of natural communities.
KeywordsAnti-predator behavior, character displacement, community ecology, evolutionary ecology, natural selection, phylogenetics, plasticity, rapid evolution.Ecology Letters (2006) 9: 357-374Human transport over the past five centuries has augmented rates of biotic exchange among the Earth's realms far beyond pre-industrial norms (Elton 1958;Perrings et al. 1992). Non-indigenous organisms may become invasive, meaning that they naturalize, i.e. become numerically and ecologically prominent, and are often capable of dominating native populations and communities (Crooks 2002). Owing to time-lags common in the establishment of non-native species, the impacts of many prior introductions are just now beginning to become manifest (Kowarik 1995). Invasive species participate in ecological webs as predators, pathogens or parasites of natives, as competitors with natives for space and other resources, and as mutualists or hosts (Schiffman 1994). The subdiscipline of invasion biology has developed to address our lack of knowledge regarding the capacity of invasives to alter native communities, as well as the attributes leading to vulnerability in native communities and the characteristics that make some invading...