The European Parliament has adopted Directive 2019/1161 on the promotion of environmentally friendly and energy-efficient road transport vehicles, which also defines the obligations and forms of support for the procurement of environmentally friendly vehicles in urban logistics. The increase in the number of shipments delivered within e-commerce, which is also the result of the COVID-19 pandemic, requires a transition to a sustainable logistics system. New research questions are being raised in the preparation of new projects for the introduction of small electric commercial vehicles in particular. One of the main research questions about deployment itself is whether light commercial electric vehicles are able to fully replace conventionally powered vehicles. What operating conditions are optimal for the operation of them? How does load weight affect the energy efficiency of operating a light commercial electric vehicle? The authors decided to carry out research into the impacts of weight and the nature of a driving cycle under laboratory conditions to eliminate all external factors that could distort individual measurements and their results. In order to simulate driving cycles, an urban driving cycle was designed on the basis of the course of speed, acceleration, deceleration and slope conditions of roads in the selected regional city of Žilina (Slovakia). In the case of the operation of an electrically powered light commercial vehicle, the impact of load weight on the range of the vehicle is low, and is below the level of the theoretical maximum range of the vehicle in urban logistics applications. The operation of electrically powered vehicles in hilly terrains with relatively longer gradients and steeper slopes increases electricity consumption and, thereby, reduces their range.