In the southwestern U.S., many rangelands have converted from native grasslands to woody shrublands dominated by creosotebush (Larrea tridentate) and honey mesquite (Prosopis glandulosa), threatening ecosystem health. Both creosotebush and mesquite have well-developed long root systems that allow them to outcompete neighboring plants. Thus, control of these two invasive shrubs is essential for revegetation in arid rangelands. Simulation models are valuable tools for describing invasive shrub growth and interaction between shrubs and other perennial grasses and for evaluating quantitative changes in ecosystem properties linked to shrub invasion and shrub control. In this study, a hybrid and multiscale modeling approach with two process-based models, ALMANAC and APEX was developed. Through ALMANAC application, plant parameters and growth cycles of creosotebush and mesquite were characterized based on field data. The developed shrub growth curves and parameters were subsequently used in APEX to explore productivity and range condition at a larger field scale. APEX was used to quantitatively evaluate the effect of shrub reductions on vegetation and water and soil qualities in various topological conditions. The results of this study showed that this multi modeling approach is capable of accurately predicting the impacts of shrubs on soil water resources.