Domestic dogs can affect human health through bites and pathogen transmission, particularly in resource-poor countries where dogs, including owned ones, predominantly roam freely. Habitat and resource selection analysis methods are commonplace in wildlife studies but have not been used to investigate the environmental resource use of free-roaming domestic dogs (FRDD). The present study implements GPS devices to investigate habitat selection by FRDD from an urban site and a rural site in Indonesia, and one urban and two rural sites in Guatemala (N = 321 dogs). Spatial mixed effects logistic regression models, accounting for heterogeneous distribution of the resources, showed that patterns of habitat selection by FRDD were similar across study sites. The most preferred resources were anthropogenic, being buildings and roads, which implies selection for human proximity. Vegetation and open fields were less preferred and steep terrain was avoided, indicating that FRDD were synanthropic and that their space patterns likely optimised energy use. Results presented here provide novel data on FRDD habitat selection patterns, while improving our understanding of dog roaming behaviour. These findings provide insights into possible high-risk locations for pathogen transmission for diseases such as rabies, and can assist management authorities in the planning and deployment of efficient disease control campaigns, including oral vaccination.