Abstract:We prove some new rank selection theorems for balanced simplicial complexes. Specifically, we prove that if a balanced simplicial complex satisfies Serre's condition $(S_{\ell})$ then so do all of its rank selected subcomplexes. We also provide a formula for the depth of a balanced simplicial complex in terms of reduced homologies of its rank selected subcomplexes. By passing to a barycentric subdivision, our results give information about Serre's condition and the depth of any simplicial complex. Our results… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.