2020
DOI: 10.1016/j.jnt.2020.04.013
|View full text |Cite
|
Sign up to set email alerts
|

Rankin-Cohen brackets of eigenforms and modular forms

Abstract: We use Maeda's Conjecture to prove that the Rankin-Cohen bracket of an eigenform and any modular form is only an eigenform when forced to be because of the dimensions of the underlying spaces. We further determine when the Rankin-Cohen bracket of an eigenform and modular form is not forced to produce an eigenform and when it is determined by the injectivity of the operator itself. This can also be interpreted as using the Rankin-Cohen bracket operator of eigenforms to create evidence for Maeda's Conjecture.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?