There is growing recognition that bone serves important endocrine and immunologic functions that are compromised in several disease states. While many factors are known to affect bone metabolism, recent attention has focused on investigating the role of purinergic signaling in bone formation and regulation. Adenosine is a purine nucleoside produced intracellularly and extracellularly in response to stimuli such as hypoxia and inflammation, which then interacts with P1 receptors. Numerous studies have suggested that these receptors play a pivotal role in osteoblast, osteoclast, and chondrocyte differentiation and function. This review discusses the various ways by which adenosine signaling contributes to bone and cartilage homeostasis, while incorporating potential therapeutic applications of these signaling pathways.