One advantage of computational fluid dynamics (CFD) is its ability to reveal the physics or nature of practical engineering problems in detail, allowing engineers and scientists to develop rigorous, effective, and efficient solutions. In this chapter, an effective approach to investigate gas turbine hot component failure is demonstrated, and the mid-span cracking of nozzle guide vanes (NGVs) is used as an example. It is a two-step approach. In the first step, a 60° combustor sector with simplified NGVs and thermocouples attached is simulated; and in the second step, NGV sectors are simulated, where each NGV sector is comprised of one high-fidelity probe NGV and several dummy NGVs. The former identifies the NGV having the highest thermodynamic load and provides the inlet boundary conditions for the latter. The CFD analysis successfully identified the root causes of the NGV damage pattern and mid-span cracking, i.e., the hot streaks from the combustor and inadequate internal cooling.