Ransomware Detection Using Stacked Autoencoder for Feature Selection
Mike Nkongolo Wa Nkongolo,
Mahmut Tokmak
Abstract:In response to the escalating malware threats, we propose an advanced ransomware detection and classification method. Our approach combines a stacked autoencoder for precise feature selection with a Long Short-Term Memory classifier which significantly enhances ransomware stratification accuracy. The process involves thorough preprocessing of the UGRansome dataset, training an unsupervised stacked autoencoder for optimal feature selection, and fine-tuning via supervised learning to elevate the Long Short-Term … Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.