Alzheimer's disease (AD) is the most common form of dementia, gradually disrupting the brain network to impair memory, language, and cognition. While the amyloid hypothesis remains the leading proposed mechanism to explain AD pathophysiology, anti-amyloid therapeutic strategies have yet to translate into useful therapies, suggesting that amyloid β-protein and its precursor, the amyloid precursor protein (APP) are but a part of the disease cascade. Further, risk of AD can be modulated by a number of factors, the most impactful being the ε4 isoform of apolipoprotein E (apoE). A recent study reported a novel isoform-dependent transcriptional regulation of APP by apoE. These interesting new results add to the myriad of mechanisms that have been proposed to explain how apoE4 enhances AD risk, highlighting the complexities of not only apoE and AD pathophysiology, but also of disease itself.