Several parasitoids of the genus Psyttalia have been repeatedly introduced as biological control agents against the principal pest of olive, the fly Bactrocera oleae. However, few of the parasitoids released have become established and proved effective against B. oleae. It may however still be possible to find effective biological control agents adapted to local environmental conditions among the highly diverse Psyttalia species and populations infesting B. oleae worldwide. For this purpose, we have developed a rapid, sensitive molecular method based on the polymerase chain reaction (PCR) for estimating and comparing the parasitism success of Psyttalia parasitoids through the detection of eggs and larvae within the host. This method was tested and shown to be appropriate for two Psyttalia species (Psyttalia concolor and Psyttalia lounsburyi). The possible detection of DNA was also demonstrated for several populations of these species and for other Psyttalia species, namely Psyttalia humilis and Psyttalia ponerophaga. For P. concolor and P. lounsburyi, a strong correlation was observed between the parasitism rates estimated by PCR, host larva dissection and counts of emerging parasitoids. No significant difference was found between the rates of parasitism estimated by host larva dissection and PCR, whereas the rates of parasitism estimated by PCR were significantly higher than those estimated from emergence, suggesting occurrence of mortality during the parasitoid development. This PCR method is thus highly reliable and provides an objective criterion for estimating the efficacy of biological control agent candidates from diverse taxa and populations of Psyttalia.⇑ Corresponding author.