Solid-state nuclear magnetic resonance (SSNMR) spectroscopy has largely overtaken nuclear quadrupole resonance (NQR) spectroscopy for the study of quadrupolar nuclei. In addition to information on the electric field gradient, SSNMR spectra may offer additional information concerning other NMR interactions such as magnetic shielding. With continued technological advances contributing to developments such as higher magnetic fields, SSNMR boasts several practical advantages over NQR. However, NQR is still a relevant technique, as it may often be the most practical approach in cases of extremely large quadrupolar coupling constants. Here, we discuss the advantages and disadvantages of SSNMR and NQR spectroscopies, with the quadrupolar halogens serving as examples. The purpose of this article is to serve as a guide on using SSNMR and NQR as complementary tools, covering some of their practicalities, limitations, and experimental challenges. K E Y W O R D S nuclear quadrupole resonance, quadrupolar halogens, quadrupolar nuclei, solid-state nuclear magnetic resonance