Fosmids and cosmids are vectors frequently used in functional metagenomic studies. With a large insert capacity (around 30 kb) they can encode dozens of cloned genes or in some cases, entire biochemical pathways. Fosmids with cloned inserts can be transferred to heterologous hosts and propagated to enable screening for new enzymes and metabolites. After screening, fosmids from clones with an activity of interest must be de novo sequenced, a critical step towards identification of the gene(s) of interest. In this work, we present a new approach for rapid and high-throughput fosmid sequencing directly from Escherichia coli colonies without liquid culturing or fosmid purification. Our sample preparation involves fosmid amplification with phi29 polymerase and then direct nanopore sequencing using the Oxford Nanopore Technologies system. We also present a bioinformatics pipeline termed "phiXXer" that facilitates both de novo read assembly and vector trimming to generate a linear sequence of the fosmid insert. Finally, we demonstrate accurate sequencing of 96 fosmids in a single run and validate the method using two fosmid libraries that contain cloned large insert (~30-40 kb) genomic or metagenomic DNA.