Intertidal habitats like oyster reefs and salt marshes provide vital ecosystem services including shoreline erosion control, habitat provision, and water filtration. However, these systems face significant global change as a result of a combination of anthropogenic stressors like coastal development and environmental stressors such as sea-level rise and disease. Traditional intertidal habitat monitoring techniques are cost and time-intensive, thus limiting how frequently resources are mapped in a way that is often insufficient to make informed management decisions. Unoccupied aircraft systems (UASs) have demonstrated the potential to mitigate these costs as they provide a platform to rapidly, safely, and inexpensively collect data in coastal areas. In this study, a UAS was used to survey intertidal habitats along the Gulf of Mexico coastline in Florida, USA. The structure from motion photogrammetry techniques were used to generate an orthomosaic and a digital surface model from the UAS imagery. These products were used in a geographic object-based image analysis (GEOBIA) workflow to classify mudflat, salt marsh, and oyster reef habitats. GEOBIA allows for a more informed classification than traditional techniques by providing textural and geometric context to habitat covers. We developed a ruleset to allow for a repeatable workflow, further decreasing the temporal cost of monitoring. The classification produced an overall accuracy of 79% in classifying habitats in a coastal environment with little spectral and textural separability, indicating that GEOBIA can differentiate intertidal habitats. This method allows for effective monitoring that can inform management and restoration efforts.