Prion diseases are transmissible, fatal neurologic diseases of mammals caused by the accumulation of mis-folded, disease associated prion protein (PrPd). Creutzfeldt-Jakob Disease (CJD) is the most common human prion disease and can occur by sporadic onset (sCJD) (~85% of CJD cases), genetic mutations in the prion protein gene (10–15%) or iatrogenic transmission (rare). PrPd is difficult to inactivate and many methods to reduce prion infectivity are dangerous, caustic, expensive, or impractical. Identifying viable and safe methods for decontamination of CJD exposed materials is critically important for medical facilities and research institutions. Previous research has shown that concentrated sodium hypochlorite (bleach) was effective at inactivation of CJD prions derived from brains of mice or guinea pigs. Unfortunately, human prions adapted to rodents may mis-fold differently than in humans, and the rodent adapted prions may not have the same resistance or susceptibility to inactivation present in bona fide CJD prions. To confirm that bleach was efficacious against human sourced CJD prions, we exposed different subtypes of sCJD-infected human brain homogenates to different concentrations of bleach for increasing exposure times. Initial and residual prion seeding activity following inactivation were measured using Real-Time Quaking Induced Conversion. In addition, we tested how passage of human sCJD into either transgenic mice that expressed human prion protein, or transmission of CJD to human cerebral organoids (CO), two common laboratory practices, may affect CJD prions’ susceptibility to bleach inactivation. Our results show that bleach is effective against human sourced sCJD prions, and both treatment time and concentration of bleach were important factors for CJD inactivation. CJD derived from human brains, transgenic mouse brains or CO were all susceptible to inactivation with as low as a 10 percent bleach solution with a 30-minute exposure time or a 50 percent bleach solution with as little as a 1-minute exposure time.