Across vertebrates, aggression is robustly expressed during the breeding season when circulating testosterone is elevated, and testosterone activates aggression either directly or after aromatisation into 17β-oestradiol (E2 ) in the brain. In some species, such as the song sparrow, aggressive behaviour is also expressed at high levels during the nonbreeding season, when circulating testosterone is non-detectable. At this time, the androgen precursor dehydroepiandrosterone (DHEA) is metabolised within the brain into testosterone and/or E2 to promote aggression. In the present study, we used captive male song sparrows to test the hypothesis that an acute agonistic interaction during the nonbreeding season, but not during the breeding season, would alter steroid levels in the brain. Nonbreeding and breeding subjects were exposed to either a laboratory simulated territorial intrusion (L-STI) or an empty cage for only 5 min. Immediately afterwards, the brain was rapidly collected and flash frozen. The Palkovits punch technique was used to microdissect specific brain regions implicated in aggressive behaviour. Solid phase extraction followed by radioimmunoassay was used to quantify DHEA, testosterone and E2 in punches. Overall, levels of DHEA, testosterone and E2 were higher in brain tissue than in plasma. Local testosterone and E2 levels in the preoptic area, anterior hypothalamus and nucleus taeniae of the amygdala were significantly higher in the breeding season than the nonbreeding season and were not affected by the L-STI. Unexpectedly, subjects that were dominant in the L-STI had lower levels of DHEA in the anterior hypothalamus and medial striatum in both seasons and lower levels of DHEA in the nucleus taeniae of the amygdala in the breeding season only. Taken together, these data suggest that local levels of DHEA in the brain are very rapidly modulated by social interactions in a context and region-specific pattern.