Proceedings of the Tenth International Conference on Information and Knowledge Management 2001
DOI: 10.1145/502585.502665
|View full text |Cite
|
Sign up to set email alerts
|

Rapid association rule mining

Abstract: Association rule mining is a well-researched area where many Wee-Keong Ng algorithms have been proposed to improve the speed of mining. In this paper, we propose an innovative algorithm called Rapid Association Rule Mining (RARM) to once again break this speed barrier. It uses a versatile tree structure known as the Szlpport-Ordered Die Ztemset (SOTrieIT) structure to hold pre-processed transactional data. This allows RARM to generate large l-itemsets and 2-itemsets quickly without scanning the database and wi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
47
0
2

Year Published

2006
2006
2023
2023

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 67 publications
(49 citation statements)
references
References 7 publications
0
47
0
2
Order By: Relevance
“…There are also several optimized versions of Apriori, such as DHP [115] and RARM [35]. FP-Growth discovers frequent itemsets without a candidate generation step.…”
Section: Correlations and Association Rulesmentioning
confidence: 99%
“…There are also several optimized versions of Apriori, such as DHP [115] and RARM [35]. FP-Growth discovers frequent itemsets without a candidate generation step.…”
Section: Correlations and Association Rulesmentioning
confidence: 99%
“…Uygulama alanlarına ait bazı örnekler aşağıda verilmiştir: -Pazar araştırması; hedef pazar, müşteriler arası benzerliklerin saptanması, sepet analizi, çapraz pazar incelemesi -Risk analizi; kalite kontrol, rekabet analizi, sahtekârlıkların saptanması -Belgeler arası benzerlik; e-postalar, haber kümeleri benzerliklerinin saptanması -Müşteri kredi risk araştırmaları -Yaban hayatı yönetimi; popülâsyonun yörünge izleri izlenerek hayvan göç modellerini ortaya koyma -Kirlilik; kayıtlı duman iz hareketleri izlenerek, hava akışı modelleri üzerinde çalışarak kirlilik kaynağına ulaşabilme -Sensörler; fiziksel alanlarda çevresel izlenimler -Coğrafi Bilgi Sistemi; deprem, su taşmaları, arazi oluşumları, kent yerleşim planı, yatırım amaçlı alanların belirlenmesi gibi coğrafi çalışmalar -İş Sağlığı ve güvenliği; mevcut önlemler ile riskler arasındaki ilişki, alınması gereken önlemler ile riskler arasındaki ilişki, önlemler ile risklerin olasılık ve şiddet ilişkisi, tehlikeler ile önlemler arasındaki ilişki gibi ilişkilerin çıkarılması AIS [6], SETM [7], Apriori [8], RARM -Rapid Association Rule Mining [9], CHARM [10].…”
Section: Veri Madenciliği Uygulama Alanlarıunclassified
“…Rapid association rule mining [50],Generalized association rule mining [51,52,53] ,Fuzzy association rule mining [54] Mining, Distributed association rule mining [55], Association rule mining using multi criteria decision methods (Global profit weight method) [56], Frequent item sets using vertical layout [57], Maximal and closed frequent pattern mining algorithms [57], Multi dimensional and Quantitative association rule mining algorithms [57], Sequential association rule mining algorithms [57], Incremental association rule mining algorithms [57], Image association rule mining [3] and Association rule mining for clustering [58,59,60] are seen in the literature. The comparison scheme provides a frame work which clearly shows the search type, number of scans required(k-represent number of items) and data structure of the various association rule mining algorithms.…”
Section: Other Important Association Rule Mining Algorithmsmentioning
confidence: 99%