Antibiotics are a group of drugs widely used as human and veterinary drugs and in aquaculture and agriculture. Recently, parent compounds and their metabolites are constantly excreted and released into environmental matrices, due to the fact that antibiotics cannot be completely metabolized after consumption by humans and animals and cannot be completely removed by conventional wastewater treatment plants. The accumulation and persistence of antibiotics in environmental matrices can lead to harmful effects on ecosystems, even at concentration levels as low as ng/L to μg/L. Rifampicin (RIF), which belongs to the macrocyclic antibiotic class, is the most important antibiotic widely used in the tuberculosis treatment. Lately, the RIF was detected in aquatic environments and needs to be removal effectively. This review considers the current state of knowledge regarding the sources, fate, effects and removal processes of the antibiotic RIF. In this review, the different treatment techniques such as adsorption, advanced oxidation processes (AOPs) and other technologies (membrane process and moving bed biofilm reactor) for RIF removal were evaluated and compared. A comparison between these techniques was made focusing on performance and efficiency. As a result, it was found that adsorption and AOPs were the most studied method and almost all of the studied RIF removal methods were also to be successful.