Infectious diseases caused by bacterial pathogens are currently a significant problem for global public health. Rapid diagnosis and effective treatment of clinically significant bacterial pathogens can prevent, control, and inhibit infectious diseases. Therefore, there is an urgent need to develop selective and accurate diagnostic methods for bacterial pathogens and clinically effective treatment strategies for infectious diseases. In recent years, developing novel nanoparticles has dramatically facilitated the rapid and accurate diagnosis of bacterial pathogens and the precise treatment of contagious diseases. In this review, we systematically investigated a variety of nanoparticles currently applied in the diagnosis and treatment of bacterial pathogens, from synthesis procedures to structural characterization and then to biological functions. In particular, we first discussed the current progress in applying representative nanoparticles for bacterial pathogen diagnostics. The potential nanoparticle-based treatment for the control of bacterial infections was then carefully explored. We also discussed nanoparticles as a drug delivery method for reducing antibiotic global adverse effects and eradicating bacterial biofilm formation. Furthermore, we studied the highly effective nanoparticles for therapeutic applications in terms of safety issues. Finally, a concise and insightful discussion of nanoparticles' limitations, challenges, and perspectives for diagnosing and eradicating bacterial pathogens in clinical settings was conducted to provide a direction for future development.