The catalytic domain of metalloelastase (matrix metalloproteinase-12 or MMP-12) is unique among MMPs in exerting high proteolytic activity upon fibrils that resist hydrolysis, especially elastin from lungs afflicted with chronic obstructive pulmonary disease or arteries with aneurysms. How does the MMP-12 catalytic domain achieve this specificity? NMR interface mapping suggests that ␣-elastin species cover the primed subsites, a strip across the -sheet from -strand IV to the II-III loop, and a broad bowl from helix A to helix C. The many contacts may account for the comparatively high affinity, as well as embedding of MMP-12 in damaged elastin fibrils in vivo. We developed a strategy called BINDSIght, for bioinformatics and NMR discovery of specificity of interactions, to evaluate MMP-12 specificity without a structure of a complex. BINDSIght integration of the interface mapping with other ambiguous information from sequences guided choice mutations in binding regions nearer the active site. Single substitutions at each of ten locations impair specific activity toward solubilized elastin. Five of them impair release of peptides from intact elastin fibrils. Eight lesions also impair specific activity toward triple helices from collagen IV or V. Eight sites map to the "primed" side in the III-IV, V-B, and S1 specificity loops. Two map to the "unprimed" side in the IV-V and B-C loops. The ten key residues circumscribe the catalytic cleft, form an exosite, and are distinctive features available for targeting by new diagnostics or therapeutics.Although protein-protein interactions are universally important, mechanistic understanding of their specificity is often poor (1). An impediment to detailed understanding of proteolytic attack of proteins is the transience and potential heterogeneity of the interactions, which interfere in capturing the structure of a substrate complex by crystallography or other methods. These complications affect characterization of matrix metalloproteinase-12 (MMP-12), 3 the metalloelastase secreted by human macrophages at sites of inflammation. To investigate how MMP-12 achieves specificity for protein fibrils from lungs and arteries, we developed an approach designated BINDSIght, for its combination of bioinformatics and NMR discovery of specificity of interactions.In lungs, arteries, skin, and basement membranes, elastin provides elastic recoil, is heavily cross-linked, and is difficult to digest. Collagens are ubiquitous and comprise ϳ25% of the protein mass of the body. Damage to fibrils of the extracellular matrix by proteases such as MMP-12 contributes to the inflammation and chronic disease states of chronic obstructive pulmonary disease (2-4), atherosclerosis (5-6), abdominal aortic aneurysm (7), multiple sclerosis (8), ulcerative colitis (9), asthma (4), and rheumatoid arthritis (10). The progression of chronic obstructive pulmonary disease/emphysema and (abdominal aortic aneurysm) in smokers depends in large part on MMP-12 expression (11) and its degradation of elastin (7, 12). ...