The pathogenic actinomycete Rhodococcus equi harbors different types of virulence plasmids associated with specific nonhuman hosts. We determined the complete DNA sequence of a vapB ؉ plasmid, typically associated with pig isolates, and compared it with that of the horse-specific vapA ؉ plasmid type. pVAPB1593, a circular 79,251-bp element, had the same housekeeping backbone as the vapA ؉ plasmid but differed over an Ϸ22-kb region. This variable region encompassed the vap pathogenicity island (PAI), was clearly subject to selective pressures different from those affecting the backbone, and showed major genetic rearrangements involving the vap genes. The pVAPB1593 PAI harbored five different vap genes (vapB and vapJ to -M, with vapK present in two copies), which encoded products differing by 24 to 84% in amino acid sequence from the six full-length vapA ؉ plasmid-encoded Vap proteins, consistent with a role for the specific vap gene complement in R. equi host tropism. Sequence analyses, including interpolated variable-order motifs for detection of alien DNA and reconstruction of Vap family phylogenetic relationships, suggested that the vap PAI was acquired by an ancestor plasmid via lateral gene transfer, subsequently evolving by vap gene duplication and sequence diversification to give different (host-adapted) plasmids. The R. equi virulence plasmids belong to a new family of actinobacterial circular replicons characterized by an ancient conjugative backbone and a horizontally acquired niche-adaptive plasticity region.Rhodococcus equi is a member of the mycolic acid-containing group of actinobacteria, or mycolata, which also includes the Corynebacterium, Gordonia, Mycobacterium, and Nocardia genera (18). Like many other actinomycetes, R. equi is ubiquitous in nature and lives as a saprophyte in soil (25,35,41). The genus Rhodococcus is a genetically diverse taxon that may be empirically classified into two groups (4, 23): the nonpathogenic, or environmental, rhodococci, exemplified by Rhodococcus erythropolis, which includes metabolically versatile bacteria of industrial interest (32), and the pathogenic rhodococci, with two species, the plant pathogen Rhodococcus fascians (22) and the animal pathogen R. equi (25,35,41). All rhodococci typically harbor large conjugative plasmids encoding nicheadaptive functions, such as various primary and secondary metabolic processes in the environmental species and host colonization (virulence) factors in the pathogenic ones. Some of these extrachromosomal replicons are linear megaplasmids of up to 1 Mb in size, whereas others are circular plasmids of Ϸ100 kb (34, 55).R. equi can be isolated from pulmonary and extrapulmonary pyogranulomatous infections in various mammalian hosts. It causes equine purulent bronchopneumonia, or rattles, a severe respiratory disease of foals characterized by extensive abscessation of the lung parenchyma, lymphadenitis, and a high mortality rate. R. equi is also an opportunistic human pathogen associated with AIDS and immunosuppression. Human rho...