By monitoring opioid metabolites, wastewater-based epidemiology (WBE) could be an excellent tool for real-time information on consumption of illicit drugs. A key limitation of WBE is the reliance on costly laboratory-based techniques that require substantial infrastructure and trained personnel, resulting in long turnaround times. Here, we present an aptamer-based graphene field effect transistor (AptG-FET) platform for simultaneous detection of three different opioid metabolites. This platform provides a reliable, rapid, and inexpensive method for quantitative analysis of opioid metabolites in wastewater (WW). The platform delivers a limit of detection (LOD) 2-3 orders of magnitude lower than previous reports, but in line with the concentrations range (pg/ml to ng/ml) of these opioid metabolites present in real samples. To enable multianalyte detection we developed a facile, reproducible, and high yield fabrication process producing twenty G-FETs with integrated side gate platinum (Pt) electrodes on a single chip. Our devices achieved the simultaneous and selective multianalyte detection of three different metabolites: Noroxycodone (NX), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), and Norfentanyl (NF) in wastewater.