The values of arterial pressure (AP) during sleep predict cardiovascular risk. Sleep exerts similar effects on cardiovascular control in human subjects and mice. We aimed to determine the underlying autonomic mechanisms in 12 C57Bl/6J mice with a novel technique of intraperitoneal infusion of autonomic blockers, while monitoring the electroencephalogram, electromyogram, AP and heart period (HP, i.e. 1/heart rate). In different sessions, we administered atropine methyl nitrate, atenolol and prazosin to block muscarinic cholinergic, β -adrenergic and α -adrenergic receptors, respectively, and compared each drug infusion with a matched vehicle infusion. The decrease in AP from wakefulness to non-rapid-eye-movement sleep (N) was abolished by prazosin but was not significantly affected by atropine and atenolol, which, however, blunted the accompanying increase in HP to a similar extent. On passing from N to rapid-eye-movement sleep (R), the increase in AP was significantly blunted by prazosin and atenolol, whereas the accompanying decrease in HP was blunted by atropine and abolished by atenolol. Cardiac baroreflex sensitivity (cBRS, sequence technique) was dramatically decreased by atropine and slightly increased by prazosin. These data indicate that in C57Bl/6J mice, N decreases mean AP by decreasing sympathetic vasoconstriction, increases HP by balancing parasympathetic activation and sympathetic withdrawal, and increases cBRS mainly by increasing fluctuations in parasympathetic activity. R increases mean AP by increasing sympathetic vasoconstriction and cardiac sympathetic activity, which also explains, at least in part, the concomitant decrease in HP. These data represent the first comprehensive assessment of the autonomic mechanisms of cardiovascular control during sleep in mice.