2022
DOI: 10.1117/1.jei.31.5.051423
|View full text |Cite
|
Sign up to set email alerts
|

Rapid fault extraction from seismic images via deep learning

Abstract: . Using deep learning to automatically and quickly extract faults from seismic images is of practical significance. An improved U-Net algorithm is proposed by reducing convolutional layers, designing skip connections, enforcing deep supervision, and improving the loss function and learning rate to build a new model. In the operation, the feature map parameters in the network are further revised, the number of training iterations is increased, a callback function is added, and the parameter adjustment training … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 22 publications
0
0
0
Order By: Relevance