Shoreline evolution and seabed morphology changes depend on coastal geomorphology as well as hydrodynamics of the nearshore region. This study investigates the morphological evolution of the northernmost headland of Rhodes Island, Greece, using a method that combines historical shoreline evolution analysis and numerical modelling of coastal processes. The satellite and aerial imagery analysis under a GIS platform reveals that, since 1982, the overall surface area of the backshore has slightly increased, though in shorter period times, large variations have been identified. The part of the beach that is most prone to extreme changes is the spit-like formation at the tip of the headland. Wind-generated waves and induced currents are the main forcing factors that affect the shape and orientation of the spit-like beach. This spit-like morphology changes seasonally due to variations in the dominant wave regime. West sector waves cause sediment deposition at the eastern sector of the spit-like formation, whereas strong southeast wave events during the winter favor accretion at the west sector, inducing an asymmetrical shape. Thus, the analysis results indicate an annual balance in sediment transport.