Background
An artificial intelligence vessel segmentation tool, Fully Automated and Robust Analysis Technique for Popliteal Artery Evaluation (FRAPPE), was used to analyze a large databank of popliteal arteries imaged through the OAI (Osteoarthritis Initiative) to study the impact of atherosclerosis risk factors on vessel dimensions and characterize remodeling patterns.
Methods and Results
Magnetic resonance images from 4668 subjects contributing 9189 popliteal arteries were analyzed using FRAPPE. Age ranged from 45 to 79 years (median, 61), and 58% were women. Mean lumen diameter, mean outer wall diameter, and mean wall thickness (MWT) were measured per artery. Their median values were 5.8 mm (interquartile range, 5.2–6.5 mm), 7.3 mm (interquartile range, 6.7–8.1 mm), and 0.78 mm (interquartile range, 0.73–0.84 mm) respectively. MWT was associated with multiple cardiovascular risk factors, with age (4.2% increase in MWT per 10‐year increase in age; 95% CI, 3.9%–4.5%) and sex (8.6% higher MWT in men than women; 95% CI, 7.7%–9.3%) being predominant. On average, lumen and outer wall diameters increased with increasing MWT until the thickness was 0.92 mm for men and 0.84 mm for women. After this point, lumen diameter decreased steadily, more rapidly in men than women (−7.9% versus −6.1% per 25% increase in MWT;
P
<0.001), with little change in outer wall diameter.
Conclusions
FRAPPE has enabled the analysis of the large OAI knee magnetic resonance imaging data set, successfully showing that popliteal atherosclerosis is predominantly associated with age and sex. The average vessel remodeling pattern consisted of an early phase of compensatory enlargement, followed by a negative remodeling, which is more pronounced in men.