With insecticide-resistant mosquito populations becoming an ever-growing concern, new vector control technologies are needed. With the lack of new chemical classes of insecticides to control mosquito populations, the development of novel synergists may improve the performance of available insecticides. We screened a set of 20 plant essential oils alone and in combination with natural pyrethrins against Aedes aegypti (Orlando) female adult mosquitoes to assess their ability to synergize this natural insecticide. A co-toxicity factor analysis was used to identify whether plant oils modulated the toxicity of natural pyrethrins antagonistically, additively, or synergistically. Both knockdown at 1 h and mortality at 24 h were monitored. A majority of oils increased the toxicity of natural pyrethrins, either via an additive or synergistic profile. Many oils produced synergism at 2 µg/insect, whereas others were synergistic only at the higher dose of 10 µg/insect. Amyris, cardamom, cedarwood, and nutmeg East Indies (E.I.) oils were the most active oils for increasing the mortality of natural pyrethrins at 24 h with co-toxicity factors greater than 50 at either or both doses. A number of oils also synergized the 1 h knockdown of natural pyrethrins. Of these, fir needle oil and cypress oils were the most successful at improving the speed-of-action of natural pyrethrins at both doses, with co-toxicity factors of 130 and 62, respectively. To further assess the co-toxicity factor method, we applied selected plant essential oils with variable doses of natural pyrethrins to calculate synergism ratios. Only the oils that produced synergistic co-toxicity factors produced statistically significant synergism ratios. This analysis demonstrated that the degree of co-toxicity factor correlated well with the degree of synergism ratio observed (Pearson correlation coefficient r = 0.94 at 2 µg/insect; r = 0.64 at 10 µg/insect) and that the co-toxicity factor is a useful tool in screening for synergistic activity.