HIV-associated nephropathy is characterized by renal podocyte proliferation and dedifferentiation. This study found that all-trans retinoic acid (atRA) reverses the effects of HIV-1 infection in podocytes. Treatment with atRA reduced cell proliferation rate by causing G1 arrest and restored the expression of the differentiation markers (synaptopodin, nephrin, podocin, and WT-1) in HIV-1-infected podocytes. It is interesting that both atRA and 9-cis RA increased intracellular cAMP levels in podocytes. Podocytes expressed most isoforms of retinoic acid receptors (RAR) and retinoid X receptors (RXR) with the exception of RXR␥. RAR␣ antagonists blocked atRA-induced cAMP production and its antiproliferative and prodifferentiation effects on podocytes, suggesting that RAR␣ is required. For determination of the effect of increased intracellular cAMP on HIV-infected podocytes, cells were stimulated with either forskolin or 8-bromo-cAMP. Both compounds inhibited cell proliferation significantly and restored synaptopodin expression in HIV-infected podocytes. The effects of atRA were abolished by Rp-cAMP, an inhibitor of the cAMP/protein kinase A pathway and were enhanced by rolipram, an inhibitor of phosphodiesterase 4, suggesting that the antiproliferative and prodifferentiation effects of atRA on HIV-infected podocytes are cAMP dependent. Furthermore, both atRA and forskolin suppressed HIV-induced mitogen-activated protein kinase 1 and 2 and Stat3 phosphorylation. In vivo, atRA reduced proteinuria, cell proliferation, and glomerulosclerosis in HIV-1-transgenic mice. These findings suggest that atRA reverses the abnormal phenotype in HIV-1-infected podocytes by stimulating RAR␣-mediated intracellular cAMP production. These results demonstrate the mechanism by which atRA reverses the proliferation of podocytes that is induced by HIV-1.