A central basic feature of meiosis is pairing of homologous maternal and paternal chromosomes ("homologs") intimately along their lengths. Recognition between homologs and their juxtaposition in space are mediated by axis-associated DNA recombination complexes. Additional effects ensure that pairing occurs without ultimately giving entanglements among unrelated chromosomes. Here we examine the process of homolog juxtaposition in real time by 4D fluorescence imaging of tagged chromosomal loci at high spatio-temporal resolution in budding yeast. We discover that corresponding loci start coming together from a quite large distance (~1.8 μm) and progress to completion of pairing in a very short time, usually less than six minutes (thus, "rapid homolog juxtaposition" or "RHJ"). Juxtaposition initiates by motion-mediated extension of a nascent interhomolog DNA linkage, raising the possibility of a tension-mediated trigger. In a first transition, homolog loci move rapidly together (in ~30 sec, at speeds of up to ~60 nm/sec) into a discrete intermediate state corresponding to canonical ~400 nm axis distance coalignment. Then, after a short pause, crossover/noncrossover differentiation (crossover interference) mediates a second short, rapid transition that brings homologs even closer together. If synaptonemal complex (SC) component Zip1 is present, this transition concomitantly gives final close pairing by axis juxtaposition at ~100 nm, the "SC distance". We also find that: (i) RHJ occurs after chromosomes acquire their prophase chromosome organization; (ii) is nearly synchronously over thirds (or more) of chromosome lengths; but (iii) is asynchronous throughout the genome. Furthermore, cytoskeleton-mediated movement is important for the timing and distance of RHJ onset and also for ensuring normal progression. Potential implications for local and global aspects of pairing are discussed.