Nicotiana attenuata plants silenced in the expression of GLYCEROLIPASE A1 (ir-gla1 plants) are compromised in the herbivore-and wound-induced accumulation of jasmonic acid (JA). However, these plants accumulate wild-type (WT) levels of JA and divinyl-ethers during Phytophthora parasitica infection. By profiling oxylipin-enriched fractions with targeted and untargeted liquid chromatography-tandem time-of-flight mass spectrometry approaches, we demonstrate that the accumulation of 9-hydroxy-10E,12Z-octadecadienoic acid (9-OH-18:2) and additional C18 and C19 oxylipins is reduced by ca. 20-fold in P. parasitica-infected ir-gla1 leaves compared with WT. This reduced accumulation of oxylipins was accompanied by a reduced accumulation of unsaturated free fatty acids and specific lysolipid species. Untargeted metabolic profiling of total leaf extracts showed that 87 metabolites accumulated differentially in leaves of P. parasitica-infected ir-gla1 plants with glycerolipids, hydroxylated-diterpene glycosides and phenylpropanoid derivatives accounting together for ca. 20% of these 87 metabolites. Thus, P. parasitica-induced oxylipins may participate in the regulation of metabolic changes during infection. Together, the results demonstrate that GLA1 plays a distinct role in the production of oxylipins during biotic stress responses, supplying substrates for 9-OH-18:2 and additional C18 and C19 oxylipin formation during P. parasitica infection, whereas supplying substrates for the biogenesis of JA during herbivory and mechanical wounding.