Structural seismic resilience is influenced by both the structural performance loss (loss) and the repair path (path). Some studies ensure the reality of path but lack accuracy of loss. Others ensure the accuracy of loss but lack the reality of path. Therefore, this paper proposes a new resilience evaluation method for frame-core tube structure that considers both loss and path. Firstly, the complex network method is used to establish structural network performance and its loss index. Next, the repair path is determined by updating the network performance after component repairs. Then, a resilience index that considers both network performance loss and repair path is proposed. Finally, the resilience of the case structures is evaluated and compared with methods that do not reasonably consider loss or path. The results indicate that the proposed method can comprehensively consider the impact of loss and path on resilience. Loss has a greater impact on resilience when the structure is less than slight loss or is in the late stage of moderate loss. Path has a greater impact on resilience when the structure is slight loss or is in the early stage of moderate loss. When only considering loss, the fixed linear path underestimates the resilience of a convex-shaped path and overestimates the resilience of a concave-shaped path. When only considering path, underestimating or overestimating loss can lead to a higher or lower resilience. Particularly when the structure is in the late stage of moderate loss, resilience dropped from 89.16% to 42.04% due to overestimation of loss.