The pursuit of high‐performance bifunctional catalysts for oxygen evolution/reduction (OER/ORR) has gained significant attention in the field of electrochemical water splitting and fuel cells. In this study, we employed density functional theory (DFT) calculations to investigate a series of 2D tetragonal TMX (TM=transition metal, X=S, Se, Te) monolayers as potential bifunctional electrocatalysts for OER/ORR. To evaluate the overall performance of OER electrocatalysts, we introduced a descriptor, Gmax. The Gmax values obtained for tetragonal CdS, CdSe, FeSe, NiSe, and NiTe monolayers were all below 1.0 V, indicative of their superior catalytic activity and selectivity. Moreover, NiSe displayed remarkable ORR capability with an overpotential (ηORR) of 0.53 V. Based on the bifunctional index (BI), the catalytic activity ranking for the bifunctional catalysts is as follows: NiSe>NiTe>FeSe>CdS>CdSe>NiS>TiSe>ZnTe. These findings provide an insightful understanding of the electrocatalytic properties of 2D tetragonal TMX monolayers for OER/ORR, opening avenues for the future development of efficient bifunctional electrocatalysts based on 2D tetragonal transition metal chalcogenides.