1977
DOI: 10.1073/pnas.74.9.3942
|View full text |Cite
|
Sign up to set email alerts
|

Rapid speciation and chromosomal evolution in mammals.

Abstract: To test the hypothesis that population subdivision into small demes promotes both rapid speciation and evolutionary changes in gene arrangement by inbreeding and *drift, we estimated rates of speciation and rates of chromosomal evolution in 225 genera of vertebrates. Rates of speciation were estimated by considering the number of living species in each genus and the fossil record of each genus as well as information about extinction rates. Speciation rate was strongly correlated with rate of chromosomal evolut… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

20
310
3
12

Year Published

1991
1991
2016
2016

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 507 publications
(345 citation statements)
references
References 26 publications
20
310
3
12
Order By: Relevance
“…It has long been recognized that, with underdominance, the probability of fixation of a new, rare mutant is exceedingly small in populations of more than a few individuals (Wright, 1941;Kimura, 1962;Bengtsson and Bodmer, 1976;Lande, 1979). Yet it is clear that mutations, including translocations, with potential underdominant effects accumulate between species and are common even among some closely related species (Bush et al, 1977;White, 1978). Several models have been proposed to try to explain this discrepancy (Bengtsson and Bodmer, 1976;White, 1978;Hedrick, 1981;Walsh, 1982).…”
Section: Overviewmentioning
confidence: 99%
“…It has long been recognized that, with underdominance, the probability of fixation of a new, rare mutant is exceedingly small in populations of more than a few individuals (Wright, 1941;Kimura, 1962;Bengtsson and Bodmer, 1976;Lande, 1979). Yet it is clear that mutations, including translocations, with potential underdominant effects accumulate between species and are common even among some closely related species (Bush et al, 1977;White, 1978). Several models have been proposed to try to explain this discrepancy (Bengtsson and Bodmer, 1976;White, 1978;Hedrick, 1981;Walsh, 1982).…”
Section: Overviewmentioning
confidence: 99%
“…Chromosomal differences between taxa have long been recognized but the role of chromosomal rearrangements in evolution is controversial. Opinions range from an almost total rejection of any role for the chromosome to the more extreme positions that have been put forward by Matthey, 1966;White, 1968White, , 1969White, , 1970White, , 1973White, , 1975White, , 1978bWhite, , 1982Mayr, 1970Mayr, , 1982Bush, 1975;Bush et al, 1977;Bickham & Baker, 1979;Hewitt, 1979Hewitt, , 1985John, 1981John, , 1983Templeton, 1981;Kirig, 1982Kirig, , 1985Kirig, , 1987Patton & Sherwood, 1983;Reig, 1984;Camacho, 1985;Lande, 1985;Baker & Bickham, 1986;Sites & Moritz, 1987;Bidau, 1988Bidau, , 1990Nachman & Myers, 1989. Some biologists, however, have maintained a judicious and critical view by analysing available data in an impartial way (John, 1981;Patton & Sherwood, 1983;Sites & Moritz, 1987).…”
Section: Discussionmentioning
confidence: 99%
“…У оквиру анализа система повезују се полни систем, кариотип, величина генома, плоидија и подаци о животном циклусу еукариота: риба, "non-avian" гмизавца, водоземаца и птица; хексапода и арахнида, те ангиосперми (The Tree of Sex Consortium, 2014). Бројна су међусобна повезивања еволуције припадника Animalia, односно Vertebrata са еволуцијом њиховог кариотипа (Chiarelli, Capanna, 1973, Bush, 1975, Bush et al, 1977, Imai et al, 1986, Dawley, Bogart, 1989.…”
Section: уводunclassified
“…Подразумјевајући да констатовани бројеви хромозома у кариотипу у гаметогенези бивају преполовљени, без обзира да ли се ради о полиплоидним (триплоидним или тетраплоидним) врстама, онда би се брзина промјене броја хромозома могла свести на такву хаплоидну гарнитуру дијељењем са два, па би за серију родова познате старости те брзине износиле 0,068, 0,352, 0,538, 0,263, 1,562 и просјек 0,557 хромозома хаплоидне гарнитуре на милион година. Ово су веће брзине у односу на оне израчунате у оквиру родова: гмизаваца од 0,0006 до 0,027, просјек 0,009; сисара од 0,000 до 0,609, просјек 0,129 (Bush et al, 1977). Бројеви хромозома у кариотипу, који су присутни у свим категоријама старости 32, 34 и 36, те 50, 52 и 54 одговарали би оптималном нивоу издијељености хромозомског материјала на хромозоме.…”
Section: одржавање (трајање) издијељености хромозомске гарнитуреunclassified
See 1 more Smart Citation