Adenomyosis is a common disorder of the uterus, and is associated with an enlarged uterus, heavy menstrual bleeding (HMB), pelvic pain, and infertility. It is characterized by endometrial epithelial cells and stromal fibroblasts abnormally found in the myometrium where they elicit hyperplasia and hypertrophy of surrounding smooth muscle cells. While both the mechanistic processes and the pathogenesis of adenomyosis are uncertain, several theories have been put forward addressing how this disease develops. These include intrinsic or induced (1) microtrauma of the endometrial–myometrial interface; (2) enhanced invasion of endometrium into myometrium; (3) metaplasia of stem cells in myometrium; (4) infiltration of endometrial cells in retrograde menstrual effluent into the uterine wall from the serosal side; (5) induction of adenomyotic lesions by aberrant local steroid and pituitary hormones; and (6) abnormal uterine development in response to genetic and epigenetic modifications. Dysmenorrhea, HMB, and infertility are likely results of inflammation, neurogenesis, angiogenesis, and contractile abnormalities in the endometrial and myometrial components. Elucidating mechanisms underlying the pathogenesis of adenomyosis raise possibilities to develop targeted therapies to ameliorate symptoms beyond the current agents that are largely ineffective. Herein, we address these possible etiologies and data that support underlying mechanisms.