The sorption of light lanthanides(III) (La(III), Ce(III), Pr(III), Nd(III)) and chromium(III) ions from acidic solutions on Nitrolite was studied at varying ions concentrations, pH, contact time and temperatures. The sorption capacity of lanthanides(III) and chromium(III) ions were examined in the ranges 2–9 and 2–5, respectively. The adsorption capacities of all metals are increase with the increasing pH (up to initial pH 9), despite the potential precipitation of metals at higher pH values. Therefore, an initial pH 9 of lanthanides gives the highest adsorption capacities. The kinetics of sorption chromium(III) and light lanthanides(III) were investigated. The experimental data were analyzed using the pseudo-first-order, pseudo-second-order forms, Elovich, and intra-particle diffusion models. The sorption kinetics of investigated ions was described by pseudo-second-order model the best. The results indicate the endothermic process of Cr(III), La(III), Ce(III), Pr(III) and Nd(III) ions sorption. The sorption capacities of La(III) 4.77 mg/g, Ce(III) 4.45 mg/g, Pr(III) 4.30 mg/g, Nd(III) 4.13 mg/g and Cr(III) 2.39 mg/g were calculated from the Langmiur model, which describes adsorption better than Freundlich and Dubinin–Radushkevich.