Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Although previous studies have been reported between the Kashin–Beck Disease (KBD) epidemic and the hydrochemical characteristics of surface waters, the etiology of the disease remains unclear. In the present study, we comprehensively investigated the relationship between the KBD and the hydrochemical characteristics of surface waters in Longzi County. Results show that, the pH (mean = 7.27 ± 0.30), total hardness (TH, mean = 57.08 ± 45.74 mg L−1), total dissolved solids (TDS, mean = 67.56 ± 44.00 mg L−1) and oxidation–reduction potential (ORP, mean = 84.11 ± 23.55 mV) of surface waters in KBD endemic areas are lower than those in the non-KBD endemic areas (means of pH = 7.49 ± 0.30; TH = 262.06 ± 123.29 mg L−1; TDS = 253.25 ± 100.39 mg L−1; ORP = 215.90 ± 55.99 mV). These results suggest that long-term consumption of low TDS, essential trace elements (e.g., nickel, cobalt, iron, selenium, zinc, molybdenum, and iodine) deficient, and potential toxic elements (e.g., arsenic) enriched waters by humans likely causes the KBD. Environmental factors such as the geology and geomorphology may produce biogeochemical imbalance, geomorphic, vegetation types and local climatic conditions may have significant impact on food fungi toxin poisoning and water organic compound poisoning, and these also impact the KBD occurrence.
Although previous studies have been reported between the Kashin–Beck Disease (KBD) epidemic and the hydrochemical characteristics of surface waters, the etiology of the disease remains unclear. In the present study, we comprehensively investigated the relationship between the KBD and the hydrochemical characteristics of surface waters in Longzi County. Results show that, the pH (mean = 7.27 ± 0.30), total hardness (TH, mean = 57.08 ± 45.74 mg L−1), total dissolved solids (TDS, mean = 67.56 ± 44.00 mg L−1) and oxidation–reduction potential (ORP, mean = 84.11 ± 23.55 mV) of surface waters in KBD endemic areas are lower than those in the non-KBD endemic areas (means of pH = 7.49 ± 0.30; TH = 262.06 ± 123.29 mg L−1; TDS = 253.25 ± 100.39 mg L−1; ORP = 215.90 ± 55.99 mV). These results suggest that long-term consumption of low TDS, essential trace elements (e.g., nickel, cobalt, iron, selenium, zinc, molybdenum, and iodine) deficient, and potential toxic elements (e.g., arsenic) enriched waters by humans likely causes the KBD. Environmental factors such as the geology and geomorphology may produce biogeochemical imbalance, geomorphic, vegetation types and local climatic conditions may have significant impact on food fungi toxin poisoning and water organic compound poisoning, and these also impact the KBD occurrence.
Background Kashin-Beck disease (KBD) is one of the major endemic diseases in China, which severely impacts the physical health and life quality of people. A better understanding of the spatial distribution of the health loss from KBD and its influencing factors will help to identify areas and populations at high risk so as to plan for targeted interventions. Methods The data of patients with KBD at village-level were collected to estimate and analyze the spatial pattern of health loss from KBD in Bin County, Shaanxi Province. The years lived with disability (YLDs) index was applied as a measure of health loss from KBD. Spatial autocorrelation methodologies, including Global Moran’s I and Local Moran’s I, were used to describe and map spatial clusters of the health loss. In addition, basic individual information and environmental samples were collected to explore natural and social determinants of the health loss from KBD. Results The estimation of YLDs showed that patients with KBD of grade II and patients over 50 years old contributed most to the health loss of KBD in Bin County. No significant difference was observed between two genders. The spatial patterns of YLDs and YLD rate of KBD were clustered significantly at both global and local scales. Villages in the southwestern and eastern regions revealed higher health loss, while those in the northern regions exhibited lower health loss. This clustering was found to be significantly related to organically bound Se in soil and poverty rate of KBD patients. Conclusions Our results suggest that future treatment and prevention of KBD should focus on endemic areas with high organically bound Se in soil and poor economic conditions. The findings can also provide important information for further exploration of the etiology of KBD.
Background: Essential trace elements (ETEs), such as copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), selenium (Se), zinc (Zn), are very important elements for human health. Methods:In this study, 89 drinking water samples and 85 highland barleys were collected from 48 villages in 11 townships, and the average daily dose (ADD) of ETEs were calculated, in addition, health effects of ETEs to rural residents in Luolong County, a typical Kashin-Beck disease (KBD) endemic area in Tibet, were assessed. Results:The mean concentrations of Cu, Fe, Mn, Mo, Se, Zn in drinking water were 0.278 ± 0.264 μg•kg −1 , 0.766 ± 0.312 μg•kg −1 , 0.411 ± 0.526 μg•kg −1 , 0.119 ± 0.223 μg•kg −1 , 0.155 ± 0.180 μg•kg −1 , and 0.804 ± 1.112 μg•kg −1 , respectively; and mean concentrations of Cu, Fe, Mn, Mo, Se and Zn in highland barley were 3.550 ± 0.680 mg•kg −1 , 81.17 ± 38.14 mg•kg −1 , 14.03 ± 1.42 mg•kg −1 , 0.350 ± 0.200 mg•kg −1 , 0.0028 ± 0.0056 mg•kg −1 , and 23.58 ± 3.10 mg•kg −1 , respectively. The ADD of Cu in the study area was appropriate; the ADD of Fe and Mn in each township were higher than the maximum oral reference dose recommended by the National Health Commission of China, indicating that Fe and Mn had non-carcinogenic health risks; the ADD of Mo and Zn in 36.36% and 54.55% of the townships exceeded the maximum oral reference dose; and 72.73% of the townships had insufficient ADD of Se. The ADD of Mo, Cu and Se in different townships was significantly correlated with the prevalence of KBD.Conclusions: Therefore, in order to prevent and control the prevalence of KBD and ensure the health of local residents, it is necessary to reduce the intake of high concentrations of Fe, Mn and Zn in diet, as well as increase the intake of Mo, Cu, especially Se.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.