Ras, a GTP-GDP binary switch protein, transduces signals from diverse receptors to regulate various signaling networks. Three Ras genes encode for protein isoforms, namely, Harvey Ras (H-Ras), Kirsten Ras (K-Ras, with two splice variants, K-Ras4A and K-Ras4B), and Neuroblastoma Ras (N-Ras). The isoforms undergo a series of post-translational modifications that enable their membrane attachment and biological activity. The activation of Ras isoforms is tightly regulated, and any dysregulation affects cellular processes, such as cell division, apoptosis, differentiation, cell migration, etc. The Ras gene is highly prone to mutation, and ~30% of cancers carry somatic mutations in Ras, whereas germline mutations clinically manifest as various rasopathies. In addition to regulation by the Guanine nucleotide exchange factors and the GTPase activation proteins, Ras signaling, and localization are also regulated by phosphorylation-dephosphorylation, ubiquitination, nitrosylation, and acetylation. Herein, we review the regulation of Ras signaling and localization by various regulatory enzymes in depth and assess the current status of Ras drug discovery targeting these regulatory enzymes.