The fine structure of the organ and the localization of the excitatory amino acids glutamate and aspartate were studied in the parietal eye of lizards by postembedding immunoelectron microscopy. The parietal eye contains cone photoreceptor cells, secondary neurons, and ependymal and lens cells. The photoreceptors form long inner and outer segments, some of them being paired as "twin-photoreceptors" by zonulae adherentes. Perikarya of neurons bear sensory cilia (containing 9x2+0 pairs of tubules) extending into the intercellular space. No neurohormonal terminals are present in the parietal eye. A higher immunoreactivity to glutamate than to aspartate is found in the photoreceptors and in the secondary neurons of the parietal eye. Glutamate immunogold labeling is more intense in the axonal processes of photoreceptors and neurons and in most of the nerve fibers of the parietal nerve running to the brain stem. Weak aspartate and glutamate immunoreactivity can be detected in the ependymal and lens cells. A similar distribution of immunoreactive amino acids is found in the photoreceptors, secondary neurons, and ependymal glial elements of the pineal organ, and retina of the lateral eye of the same animals. Immunoreactive glutamate accumulates in the axons of photoreceptors and secondary neurons of the parietal eye suggesting that this excitatory amino acid acts as a synaptic mediator in the neural efferentation of the organ. Thus, the efferent light-conducting pathway of the parietal organ is similar to that of the pineal organ and lateral eye retina. As the Mullerian cells of the retina, the ependymal and lens cells of the parietal eye and the ependymal-glial cells of the pineal organ may play a role in the metabolism and/or elimination of excitatory amino acids released by photoreceptors.