The motivation, techniques and performance of the ground-based photometric follow-up of transit detections by the CoRoT space mission are presented. Its principal raison d'être arises from the much higher spatial resolution of common ground-based telescopes in comparison to CoRoT's cameras. This allows the identification of many transit candidates as arising from eclipsing binaries that are contaminating CoRoT's lightcurves, even in low-amplitude transit events that cannot be detected with ground-based obervations. For the ground observations, "on" -"off" photometry is now largely employed, in which only a short timeseries during a transit and a section outside a transit is observed and compared photometrically. CoRoTplanet candidates' transits are being observed by a dedicated team with access to telescopes with sizes ranging from 0.2 to 2 m. As an example, the process that led to the rejection of contaminating eclipsing binaries near the host star of the Super-Earth planet CoRoT-7b is shown. Experiences and techniques from this work may also be useful for other transit-detection experiments, when the discovery instrument obtains data with a relatively low angular resolution.