CitationAn aryl dioxygenase shows remarkable double dioxygenation capacity for diverse bis-aryl compounds, provided they are carbocyclic. 2016, 100 (18)
AbstractThe bacterial dioxygenation of mono-or polycyclic aromatic compounds is an intensely studied field. However, only in a few cases has the repeated dioxygenation of a substrate possessing more than a single aromatic ring been described. We previously characterized the aryl-hydroxylating dioxygenase BphA-B4h, an artificial hybrid of the dioxygenases of the biphenyl degraders Burkholderia xenovorans LB400 and Pseudomonas sp. strain B4-Magdeburg, which contains the active site of the latter enzyme, as an exceptionally powerful enzyme. We now show that this dioxygenase possesses a remarkable capacity for the double dioxygenation of various bicyclic aromatic compounds, provided that they are carbocyclic. Two groups of biphenyl analogues were examined: series A compounds containing one heterocyclic aromatic ring and series B compounds containing two homocyclic aromatic rings. Whereas all of the seven partially heterocyclic biphenyl analogues were solely dioxygenated in the homocyclic ring, four of the six carbocyclic bis-aryls were converted into ortho,meta-hydroxylated bis-dihydrodiols. Potential reasons for failure of heterocyclic dioxygenations are discussed. The obtained bis-dihydrodiols may, as we also show here, be enzymatically re-aromatized to yield the corresponding tetraphenols. This opens a way to a range of new polyphenolic products, a class of compounds known to exert multiple biological activities. Several of the obtained compounds are novel molecules.