Mobile devices have their popularity and affordability greatly increased in recent years. As a consequence of their ubiquity, these devices now carry all sorts of personal data that should be accessed only by their owner. Even though knowledge-based procedures are still the main methods to secure the owner's identity, recently biometric traits have been employed for more secure and effortless authentication. In this work, the authors propose a facial verification method optimised to the mobile environment. It consists of a two-tiered procedure that combines hand-crafted features and a convolutional neural network (CNN) to verify if the person depicted in a photograph corresponds to the device owner. To train a CNN for the verification task, the authors propose a hybrid-image input, which allows the network to process encoded information of a pair of face images. The proposed experiments show that the solution outperforms state of the art face verification methods, providing a 4× speedup when processing an image in recent smartphone models. Additionally, the authors show that the two-tiered procedure can be coupled with existing face verification CNNs improving their accuracy and efficiency. They also present a new data set of selfie pictures-RECOD Selfie data set-that hopefully will support future research in this scenario.