Historically, fractal analysis has been remarkably successful in describing wide ranging kinetic processes on (idealized) scale invariant objects in terms of elegantly simple universal scaling laws. However, as nanostructured materials find increasing applications in energy storage, energy conversion, healthcare, etc., one must reexamine the premise of traditional fractal scaling laws as it only applies to physically unrealistic infinite systems, while all natural/engineered systems are necessarily finite. In this article, we address the consequences of the 'finite-size' problem in the context of time dependent diffusion towards fractal surfaces via the novel technique of Cantor-transforms to (i) illustrate how finiteness modifies its classical scaling exponents; (ii) establish that for finite systems, the diffusion-limited reaction is decelerated below a critical dimension [Formula: see text] and accelerated above it; and (iii) to identify the crossover size-limits beyond which a finite system can be considered (practically) infinite and redefine the very notion of 'finiteness' of fractals in terms of its kinetic response. Our results have broad implications regarding dynamics of systems defined by the same fractal dimension, but differentiated by degree of scaling iteration or morphogenesis, e.g. variation in lung capacity between a child and adult.