Compost has been shown to have a range of positive impacts on soil quality and can provide an important source of nutrients for plants. While these benefits have been documented for many finished composts, there is presently little understanding of the impact of composting process conditions and the extent of compost decomposition on soil C and N mineralization after compost incorporation. This study evaluated the impact of composting process conditions and the extent of compost decomposition on soil C and N mineralization after compost incorporation. Dried, ground composts were blended with equal parts of quartz sand and soil and incubated aerobically for 28 d at 30 °C. Cumulative respired CO 2 -C and net mineralized N were quantified. Results indicate that (1) organic substrates that did not degrade due to sub-optimal conditions during the composting process can readily mineralize after incorporation in soil; (2) C and N cycling dynamics in soil after compost incorporation can be affected by compost feedstock, processing conditions, and time; and (3) denitrification after compost incorporation in soil can limit N availability from compost.
RightsWorks produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
AbstractCompost has been shown to have a range of positive impacts on soil quality and can provide an important source of nutrients for plants. While these benefits have been documented for many finished composts, there is presently little understanding of the impact of composting process conditions and the extent of compost decomposition on soil C and N mineralization after compost incorporation. This study evaluated the impact of composting process conditions and the extent of compost decomposition on soil C and N mineralization after compost incorporation. Dried, ground composts were blended with equal parts of quartz sand and soil and incubated aerobically for 28 d at 30°C. Cumulative respired CO 2 -C and net mineralized N were quantified. Results indicate that (1) organic substrates that did not degrade due to sub-optimal conditions during the composting process can readily mineralize after incorporation in soil; (2) C and N cycling dynamics in soil after compost incorporation can be affected by compost feedstock, processing conditions, and time; and (3) denitrification after compost incorporation in soil can limit N availability from compost.